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Abstract Ab initio potentials are computed for alkali
metal cationic partners interacting with 4He and an
overall many-body potential is constructed for each of
the ionic dopants in helium clusters. The structures are
then obtained via a genetic algorithm approach and
results compared with Basin-Hopping Monte Carlo sim-
ulations. The classical arrangements are analyzed and
quantum effects discussed in comparison with what has
been found with Diffusion Monte Carlo calculations.
Further corrections to the classical picture by including
three-body forces and radial delocalization of the helium
adatoms are also considered and their effects analyzed.

Keywords van der Waals clusters · Stable structures ·
Ionic dopants

1 Introduction

The use of 4He liquid nanodroplets containing atoms
between 103 and 107 provides a unique environment
for the study of molecules and of molecular or atomic
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clusters [1–4]. Exactly because helium atoms provide
the most inert solvents, the highly quantum features of
these particles allow them to behave collectively as a
very adaptive container for the molecular impurities.
Although most of the research on doped 4He droplets
has focused on the rotational, vibrational and electronic
spectroscopies of the impurities embedded in the drop-
lets [1,2,5,6] as triggered by the observation of spectral
shifts occurring with respect to the isolated species [1],
there is also a growing interest in both photoionization
and electron impact ionization experiments on doped
helium droplets, on the interaction between the ensu-
ing dopant ion and the droplet environment and the
post-ionization dynamics of the ionic migration within
the adaptive, microsolvating quantum fluid represented
by the droplet environment [7–9]. The studies on elec-
tron impact ionization of heavier rare gases as drop-
lets [10] suggested microscopic processes resulting in
the formation of rare gas “subclusters” within the drop-
let with negligible fragmentation of the dopant cluster
ions after ionization, a result partly confirmed by later
experiments [11].

The slow migration rates of ionic dopants (mainly
cationic species) are related to the marked changes of
the interaction forces once a charge is localized on one
of the partners (mainly on the dopant), whereby the
electrostriction effects on the surrounding solvent atoms
increase their density around the impurity, further order-
ing (localizing) their relative positioning with respect to
the solvated molecule: the “snowball” model of the pro-
cess [12]. It therefore becomes of interest to be able to
describe the onset of such ionic interactions, their rela-
tive strength and features and the consequences which
they have on the building-up of the adaptive helium
partners around the specific dopant cation.
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In the present work we have therefore started this
analysis by generating an accurate, ab initio description
of the potential energy curves (PECs) between alkali
metal cations (Li+, Na+ and K+) and a single helium
atom, further computing their bound vibrational states
for the J = 0 complex. We then depicted the behavior of
the overall interaction within clusters of varying sizes as
the one given by the sum-of-potentials approximation,
i.e., as being described by the following relationship:

V(R, r) =
n∑

i=1

VM+−He(Ri) +
n∑

j<k

VHe−He(rij) (1)

where we disregard for the time being the three-body
(3B) effects and higher order contributions. Our earlier
studies on this problem [13–15] have shown (for ionic
dopants) that the 3B contributions are not negligible,
while however remaining within a few percent of the
total energies. Furthermore, we have also seen [13–15]
that the structural observables are essentially unaffected
by such corrections and therefore the results on cluster
structuring evolution remain reliable even when using
the potential model of Eq. (1). These points will be fur-
ther addressed below in our detailed presentation of the
present results.

In the following section, we shall therefore report the
component PECs used as building blocks to assemble
the overall interaction of Eq. (1) and their individual
characteristics in terms of the bound states they support
for the J = 0 configurations. Section 3 will describe in
turn the optimization procedures employed to obtain
classical structures of the smaller clusters and of our
attempts at modeling the quantum delocalization fea-
tures of the helium adatoms. Section 4 will analyze our
results for the three ionic cases and discuss their most
important characteristics, while Sect. 5 will finally pres-
ent our conclusions.

2 The interaction potentials

For the Li+–He potential we employed coupled-clus-
ter (CC) ab initio calculations involving single, double
and non-iteratively triple excitations [CCSD(T)], using a
cc-pv5Z quality of basis set expansion [16]. The equilib-
rium geometry was found to be at 1.898 Å, with a dis-
sociation energy value, De, of 646.168 cm−1. We have
discussed this potential in greater detail before [13] and
therefore will not be repeating here our analysis of it.
Suffice it to say that our description of that interaction
turned out to be in very good agreement with earlier
computational studies [17].

For the calculations of the (NaHe)+–He potential
we employed CC ab initio calculations involving single,
double and non-iteratively triple excitations [CCSD (T)]
and using again a cc-pv5Z quality of expansion [16]. The
equilibrium distance was found to be at 2.232 Å, with a
De value of 331.29 cm−1. One of the most recent ab ini-
tio studies has been the one reported by Ref. [18], where
the equilibrium geometry was found to be 2.324 Å with
a De value of 329.1 cm−10. We therefore see that our
present findings are fairly close to the best earlier calcu-
lations. Similar calculations have also been carried out
for the K+He system: we employed the CC approach,
including singles, doubles and non-iteratively triple exci-
tations [CCSD(T)] with an aug-cc-pv5Z basis set expan-
sion. This basis was generated by augmenting it with a
large and flexible additional set with contraction of the
effective core potential (ECP10MWB) [19]. For all sys-
tems examined here the basis set superposition errors
were corrected by using the counterpoise method [16].
In the case of K+He the well depth value and that of
the equilibrium internuclear distance were found to be
185.5 cm−1 and 2.83 Å, respectively. These results are
essentially coincident with an earlier calculation [20]
which turns out to be the most cited paper on KHe+:
185.4 cm−1 and 2.825 Å.

All these potential points were fitted by using the
following analytic form:

V(R) = e−β(R−R0)
n−1∑

k=1

ak(R − R0)
k − a4

f (R)

R4 (2)

where the damping function f (R) is given by

f (R) = 1 − exp (−βR)

4∑

k=1

(βR)4

k! (3)

the above fitting functions contain 17 parameters for
each system and they can be obtained on request from
the authors. The parameter a4 has been obtained in
order to yield the correct polarization potential behav-
ior at large distances. Thus, it produced the helium atom
dipole polarizability value of 1.38 a.u.

The He–He interactions within Eq. (1) were described
by the best available empirical potential [21] and com-
bined with each of the dopant-He interactions to pro-
duce the final overall interactions in each of the studied
clusters.

In the three panels of Fig. 1 we report in graphical
form the shapes of the three potential curves in the
region of their well locations, with superimposed on
them the shape and collocation of their corresponding
lowest bound states. The latter were obtained by numer-
ical integration of the nuclear Schrödinger equation [22].
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Fig. 1 Comparison of the computed potential energy curves of
the present work for the three ionic potentials. The corresponding
lowest bound states for J = 0 are also shown

It is interesting to note that the zero point energy
(ZPE) values are rather different along the series of
ionic dopants: for (7Li4He)+ it corresponds to
129.18 cm−1, which is about 20% of the overall well
depth computed for that system. On the other hand,
the Na+He curve produces a ZPE value of 74.09 cm−1,
which now corresponds to about 23% of the PEC well
depth. In the case of the K+He system we further see
that the ZPE corresponds to 48.39 cm−1 which is now
more than 26% of that system’s well depth.

All the computed binding energies for all three
potentials are given by Table 1, obtained using the fitted
functions given by Eqs. (2) and (3) and by the numerical
integration of Ref. [22]: all the more common isotopic
variants are also given in that table. We clearly see that
the 7Li4He ionic system supports seven bound states
while the corresponding findings for Na+He indicate
for the latter the existence of also seven bound states,
although all the top ones turn out (see table) to be very
close to the dissociation limit and certainly affected by
the numerical accuracy of our integration method.

Naturally, the results for the Li+–He PEC of the pres-
ent work are the same as those of [12] and presented
there.

Finally, we see that the K+He potential supports six
bound states and that the top one is also very close to
the dissociation limit.

As a pictorial assessment of their spatial extent, we
report in Fig. 2 the locations, over the spatial range of
each PEC, of the top least bound states of the three sys-
tems: for LiHe+ we also report an additional state for
ν = 7 which is found to have a rather doubtful binding
energy of 7×10−4 cm−1 and which clearly behaves as
essentially a dissociative state very close to threshold.

All the outermost bound states of Fig. 2 define the
range of radial values within which one He atom can
still be treated as bound to the ionic core. Hence, we
see that the maximum of the seventh wavefunction with
Li+ as a partner is located around 8 Å, while the same
maximum appears around 12 Å for Na+He and at a
very similar value for the K+He system. These features
help us to see how important the specific behavior of
each PES is in affecting the location of additional ada-
toms as the cluster grows and therefore will help us with
our analysis of the ground states of the classical clusters
described in the next sections.

To further see the influence of additional 3B-forces
on the energetics of the clusters with more than one
He adatom, we decided to carry out ab initio calcula-
tions, with the same level of theory as before, for the
three trimeric ions: Li+He2, Na+He2 and K+He2. The

Table 1 Computed bound state energies (J = 0) for all the isotopic variants of the three potential energy curves discussed in the present
work

ν 6Li3He 6Li4He 7Li3He 7Li4He 23Na3He 23Na4He 38K3He 38K4He 41K3He 41K4He

0 −504.7565 −516.3114 −507.9897 −519.9043 −248.3467 −257.2019 −130.9554 −136.9712 −131.0408 −137.0713
1 −279.0073 −303.5130 −285.7652 −311.3315 −125.5680 −143.0210 −56.3449 −66.8910 −56.4877 −67.0747
2 −131.5710 −157.1542 −138.4498 −165.6773 −53.1334 −69.6456 −18.8451 −27.2055 −18.94948 −27.3626
3 −49.7054 −68.5339 −54.5558 −75.2635 −17.6787 −28.6520 −4.2932 −8.6302 −4.3405 −8.7216
4 −13.5048 −23.5296 −15.9114 −27.5246 −3.9434 −9.2389 −0.4122 −1.7783 −0.4229 −1.8139
5 −1.9316 −5.4744 −2.6665 −7.1837 −0.3405 −1.9366 −0.1240 −0.1300
6 −0.0292 −0.5269 −0.0893 −0.9257 −0.1336
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Fig. 2 Computed bound states for the topmost level in each of
the ionic systems. For Li+He an additional dissociative state very
close to threshold is also shown

ab initio results for the LiHe+
2 ion indicate a minimum

configuration which has a bent structure with ϑ = 106◦
and a distance of 1.9 Å. These data are very close to the
quantum results we had obtained earlier by using the
sum-of-potentials approach of Eq. (1)[13]: 124◦ ± 24◦
and 2.01 Å. Furthermore, the computed binding energy
is here of −1287.23 cm−1, which is only 11 cm−1 higher
than the sum-of-potential result of −1298 cm−1. This
value indicates, therefore, that for ionic partners the
combined effects of “electrostriction” and “snowball”
formation [23] conjure up a structural picture close to
the classical one and to an overall interaction given by
Eq. (1). In any case, the linear structure was found to
be symmetric and very close in energy: hence it is diffi-
cult to realistically decide wether or not the most stable
structure remains linear.

Similar calculations for the NaHe+
2 trimer produced

an ab initio linear structure (ϑ = 180◦) and equilib-
rium bond distance of 2.32 Å, not far from the value
of the trimer quoted before (2.23 Å). Furthermore, the
corresponding ab initio binding energy was found to

be –659.821 cm−1, which differs by only 2 cm−1 from
the sum-of-potential total energy: a confirmation of the
substantial validity of that model.

Finally, the ab initio calculations for the K+He2 ionic
trimer yielded again a linear structure (ϑ = 180◦) for
its optimal geometry and a bond distance of 2.831 Å,
which does not differ much from one of the monomer
found by the same level of calculation (2.827 Å). The
total energy of −367.765 cm−1 also agrees well with the
sum of potential value of –370.90 cm−1. In other words,
at least for the smaller clusters, 3B effects play a rather
limited role and suggest that we could employ Eq. (1)
to generate spatial structures for the larger ionic clus-
ters created via the accurate, ab initio PEC described
in the present work. The methods that we shall use to
generate such structures will be discussed in detail in
the following section. One should keep in mind, how-
ever, that the smallness of 3B effects within dominantly
linear structures (where relative distances between the
two adatoms are maximized) is certainly not a surprising
result.

One should further note that the overall minimum
energies for all three systems of their linear or of their
bent structures are very close to each other, since
they chiefly differ by the long-range He–He potential.
Thus, the ab initio calculations can generate either one
or the other configuration depending on small changes
of the basis sets or of the computational method. In any
event, the optimization methods reported in the follow-
ing section indicate that the classical bent structures are
invariably the lowest ones in energy when the sum-of-
potentials model is employed for all three ions.

3 The optimization methods

One of the crucial issues in the analysis of structural
details is the reliability of classical optimization proce-
dures for obtaining the most stable structures and the
energetics of cluster formation and cluster growth in
the presence of ionic dopants for a quantum solvent
like helium. In reporting a comparison of such classical
findings with those where the He adatoms are correctly
treated as quantum objects we shall show below that
the former is indeed a realistic procedure and that the
classical determination of the cluster structures is able
to provide significant data on ionic microsolvation.

In carrying out the classical analysis, which is the
main focus of the present work, we followed two dis-
tinct optimization processes, briefly outlined in two sub-
sections below. We further included three-body effects
on the energetics and a quantum representation of radial
delocalization of adatoms: both corrections to the
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classical picture of the microsolvation are also outlined
below.

3.1 The genetic algorithm approach

In order to carry out structural optimization we use
a method based on the well-known genetic algorithm
[24,25], a procedure which can provide a reasonably fast
way to find the minima for a general multidimensional
function as that given by the present overall poten-
tial. The method follows closely the scheme we recently
reviewed in [26] whereby a generic i-th individual, in our
case a single geometric structure with a given energy,
is described by the 3N Cartesian coordinates of the N
atoms ({xi

j}, j = 1 : 3N), plus a further set of strategy
parameters ({ηi

j}, j = 1 : 3N), which are standard devi-
ations of a Gaussian function centered on each coordi-
nate. The starting population of M (randomly chosen)
individuals constitutes the first parents set and such a set
evolves according to an evolution law that generates a
new population of offsprings:

xi′
j = xi

j + ηi
jNj(0, 1)� (4)

ηi′
j = ηi

j exp [τ ′
N(0, 1) + τNj(0, 1)] (5)

where N(0,1) and Nj (0,1) are standard Gaussian ran-
dom numbers, the two parameters τ and τ ′ are respec-
tively equal to (

√
2
√

3N)−1 and (
√

6N)−1 and � is a
displacement factor that increases the resolution power.
The union of the parents and the offsprings provides
a population made of 2M individuals whose members
challenge now a number q of randomly chosen oppo-
nents. The winner of each challenge is the individual
with the lower energy value, and it scores one point.
The best M individuals are then becoming parents for
the next iteration and so on.

When convergence is reached, within a preselected
energy “width”, the best structure is entered as input
in an outer cycle where it randomly generates the next
number of M structures that are characterized by the
following data:

xi′
j = xi

j + Nj(0, 1)� (6)

ηi
j = 1.0 (7)

and which now yield a new set of parents. These are
in turn employed as input in the procedure we have
described above and they perform a further optimiza-
tion by producing a new, energetically improved, struc-
ture. At the end of each outer cycle the value of � is
decreased in order to obtain a better resolution during
selection and the procedure ends when the resolution

value is under the selected tolerance threshold for the
energy.

3.2 Basin–Hopping Monte Carlo

Basin Hopping Monte Carlo (BMHC) is a global optimi-
zation algorithm which combines a conjugate gradient
optimization with a large-step Monte Carlo simulation
[27,28].

For large and weakly bound clusters, in fact, the search
for a global minimum is very difficult because of the
exponentially large number of local minima which may
also be separated by large barriers along their phase
space trajectory. In order to overcome these barriers,
large trial moves are introduced at equal intervals and
are accepted or rejected with Boltzmann probabilities
as in the importance sampling Monte Carlo [29] proce-
dures. After a sufficient number of moves is attempted,
a conjugate gradient optimization is applied to locate
a minimum and to form a data base of such local min-
ima. This method has two adjustable control parameters
which are given by the temperature and the amplitude of
atomic displacements which are used to obtain optimal
results.

For complicated potential-energy-surfaces (PES),
finding the global minimum from a single trajectory is
a difficult task even for sophisticated methods such as
the genetic algorithms discussed in the previous section.
In particular, escaping from a funnel in the PES may
require either a systematic formation of a database of
minima or running multiple trajectories to achieve a
nearly complete span of the phase space. For the study
of ionic dopants as in the present situation, there is
an additional complication given by the fact that, even
though He–He interaction is very weak compared to
that of M+–He, it still dominates the interactions when
the helium atom is far away from the ion. Consequently,
optimization algorithms may spend a great deal of time
trying to optimize the system total energy by optimiz-
ing He–He interactions. In this work we have applied a
growth scheme to overcome this problem whereby each
new cluster is generated by randomly placing a helium
atom in the vicinity of the previous cluster. This atom
is placed into the outermost shell with two randomly
selected angular coordinates. Minima located from these
structures are added to a database and, after running
a sufficient number of trajectories, the lowest energy
structure is selected to generate the next one. We have
used a simple convergence criterion where it is assumed
that the global minimum is found if three new sequences
do not produce lower energy structures. In this work 100
such sequences are generated for clusters of size up to
He70 [30].
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3.3 Modeling 3B corrections

As mentioned in the introduction, the prescription (1)
for the total interaction disregards the effects coming
from three-body (3B) contributions to the potential on
the grounds that all our earlier studies had found them
to be small in comparison with the microaggregate total
energies [13,14].

In the present study, and in our recent analysis of a
molecular cation as a dopant [26], we further improve
on Eq. (1) by adding the largest 3B contribution for the
cationic dopant which interacts with He atoms. This con-
tribution is given by the coupling between the dipoles
induced on the helium atoms that are oriented in such
a way as to minimize their repulsive interactions. The
analytical formula for this term is very simple once we
consider a point charge located at the center of mass of
the molecular ion and is given by

V3B(ri, rj) = −µµ′

r3
ij

(2 cos θi cos θj − sin θi sin θj) (8)

where θi and θj are the angles between the dipoles and
the line joining them, and where the induced dipole
moments µ and µ′ at distance r from the ion can be
evaluated with the well known formula: µ = α/r2.

Using the above correction term for all induced
dipoles in each cluster, we have thus corrected both
the total energy values and the radial distributions in
each cluster: we shall see below that such dominant cor-
rections do not really alter the general picture of the
spatial arrangements which are obtained using only the
sum-of-potentials approach.

3.4 Modeling the quantum distributions

In order to improve on the classical analysis of the
structures by including to same extent the additional
effects of quantum delocalization pertaining to the sol-
vent atoms, we have introduced radial distributions asso-
ciated with the latter partners and employed them to
modify the initial “balls and sticks” picture obtained
from the optimization algorithm.

For an atom in the cluster, the probability of being at
a distance between r and r+dr is given by P(r) = ρ(r)dr,
where ρ(r) is the required radial distribution function.
It is possible to build such a function for the helium
atoms surrounding the cationic dopant by taking advan-
tage of the data already provided by the optimization
procedure.

For an N-atoms cluster, the shape of the function ρ(r)
can be, in fact, approximated by the expression:

ρ(r) =
N∑

i=1

1√
(2πσi)

exp
(

− (r − r̄i)
2

2σi

)
(9)

where r̄i is the i-th atom distance after the optimization
and σi is the standard deviation of the ith atom distance
obtained with the propagation on the strategy parame-
ter ηi multiplied by �. In this distribution function each
atom stays in a position centered in r̄i and is distributed
according to a Gaussian with a standard deviation equal
to the method sensitivity. The radial distribution is then
normalized to the number of atoms in the cluster under
consideration.

In order to provide an estimate of the possible quan-
tum distribution, we can approximate the real quantum
dispersion of the helium atoms bound to the dopant by
arbitrarily setting the value of the standard deviation
equal to the half width of a known quantum distribution
multiplied by the strategy parameter ηi. In this way we
obtain a simulated “quantum spreading” of the helium
atoms in the cluster. The quantum solution we have
chosen is that associated with the ground state wave-
functions of M+He pairs already computed by us in the
previous section.

We have focused on radial delocalization because our
earlier work on cationic dopants [13,15] has already
shown that angular delocalizations are markedly
reduced and therefore the corresponding cluster struc-
tures are much more rigid to bending than their neutrally
doped counterparts.

4 Discussion of results

4.1 The energy landscapes

The first quantities which we have tried to extract from
our calculations involve the relative energetics of the
cluster stabilizations and the progress along the growth
process of the evaporative energetics, i.e., the energy
required to evaporate one solvent atom from a cluster
of a given size.

Both optimization procedures were followed in the
calculations as it is important to establish the internal
consistency of the methods. The behavior of the total
binding energies as a function of cluster size is reported
by Fig. 3, where the dots indicate the genetic algorithm
(GeCO) results while the solid lines report the values
given by the Basin Hopping (BH) procedure. The fol-
lowing comments could be made:

1. All three systems show a clear change of slope at
some small cluster size, the latter being around n = 6
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gies in cm−1. Solid line Basin–Hopping method (BH); dots Genetic
algorithm results

for Li+, around n = 8 for Na+ and around n = 12
for K+.

2. The slopes of the energy n-dependence for all three
clusters beyond those structural transitions remain
fairly constant and indicate that the growth energet-
ics does not go through marked “shell” formation
discontinuities.

A more detailed description of what goes on as the
cluster size increases could be gathered from the behav-
ior of the evaporative energies of single adatoms
reported for the three systems in Figs. 4, 5 and 6. We
give in each of them the results obtained via the BH
procedure (open circles) and GeCO procedure (filled-
in circles), using the following equation

�E(n) = V(n) − V(n + 1) (10)

The results for the lithium cationic dopant show again
reassuring similarities between BH and GeCO calcu-
lations, with more marked oscillations for the former
within the first six adatoms than what occurs for the
latter. These differences may perhaps be due to uncon-
verged bias selection in the walker population employed
during the MC calculations of the BH approach: they
appear in fact for all three cationic calculations, as we
shall see below.

The GeCO results, in fact, are more in keeping with
our recent Diffusion Monte Carlo calculations (DMC)
on the same systems and with the same approach [30],
where we found that the single-atom evaporation ener-
gies did not change much along the first shell of the three
systems. From Fig. 4 we further see that the pyramidal
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Fig. 4 Computed evaporation energies (cm−1) for clusters con-
taining the lithium cation as a dopant. Both Basin-Hopping (open
circles) and Genetic algorithm (filled-in circles) are shown (in units
of cm−1)

structure for n = 5 completes an internal shell of
essentially equivalent atoms which cause a sort of struc-
tural transition to the octahedral structure of the n = 6
cluster, for which the single-atom evaporative energies
drop by almost half their previous values.

A further structural transition occurs for another
“regular” solid with n = 8, where we see that the bind-
ing energies for each adatom now drop to one third of
their previous values.

The subsequent attainment of the double pyramidal
structure for n = 10 appears to close the first shell of the
cluster since the evaporation energies do not change in
any marked way when extending the cluster size from 10
to 26. In other words, we can say that the Li+-containing
clusters, within a classical picture, appear to complete
their first shell for n = 10 but reach a regular, solid-like
structure already with the octahedral configuration of
n = 6. This point will be the object of further discussion
when we shall compare below some of these findings
with their quantum counterparts.

The corresponding calculations for the sodium-con-
taining clusters are reported by Fig. 5, where we also
show pictorially the most significant spatial structures
of the doped clusters.

In the case of Na+ we deal with a larger cation (see
potential curves in Fig. 1) and one for which the inter-
action with the He adatoms is weaker than in the Li+
case. Thus, we see that the GeCO calculations extend
the energetic equivalence of the surrounding atoms up
to n = 7 structure, with a marked drop in evaporative
energy for n = 10. However, we see that the addition
of one more atom in the n = 11 case now expands the
cluster to the irregular structure shown in the figure
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Fig. 5 Same calculations as those of Fig. 4 but for the case of the
cationic sodium as a dopant. See main text for details

and therefore forces an increase of the less-screened
adatoms binding energies with respect to the previous,
more regular, minimum configuration. The latter fur-
ther drops to an even lower value when the first shell is
completed in the n = 12 regular “solid” shown in the
figure for that cluster size. From that size we see that
the evaporative energies do not change much along the
series and the present calculations therefore confirm the
dominance of He–He interaction effects as the clusters
grow in size. Finally, we see once more small differences
between BH and GeCO calculations in the two extreme
situations of a few He atoms and of the larger clusters,
while they both provide the same picture for the overall
energetic behavior of the Na+(He)n clusters.

The results for the K+(He)n clusters are reported by
Fig. 6 and were also described earlier by our work with
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Fig. 6 Computed evaporative energies (single atom) for K+-con-
taining clusters. See both Fig. 4 and the main text for further details

the BH approach only [30]. The larger cationic size and
the reduced binding energy for a single He exhibited by
this system with respect to the previous ones is causing
once more changes in the behavior of the evaporative
energies.

Thus, we see that the energetic equivalence in the
adatoms of the smaller clusters is more difficult to attain:
each new addition, in fact, modifies the previous interac-
tions with the central cation and therefore prevents the
clearer equivalence of such quantities shown by Li+ and
Na+. However, the first subshell is clearly completed by
n = 10, where a structural transition is seen to occur and
where the evaporative, single atom energy drops to half
their initial energy value. The intermediate “expansion”
shown by the sodium-containing clusters occurs here for
n = 12 while the presence of a shell completion seems
to take place around n = 14. We also see, however, that
the energy values for larger clusters is not as clear-cut
as before since the evaporative energies oscillate quite
distinctly around the 50 cm−1 average value across the
range of the larger clusters.

These differences between clusters could be better
appreciated by comparing the evaporative energy val-
ues obtained with the GeCO calculations as shown by
Fig. 7.

One clearly sees in that figure at least three interesting
comparative features among the clusters:

1. The evaporation energies of the smaller clusters
up to their first structural transitions are strongly
dominated by the M+–He potentials and therefore
clearly scale from Li+ to K+ according to the rela-
tive strength of their interactions.
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Fig. 7 Computed single-particle evaporation energies along the
cluster growth and for the three different cationic dopant dis-
cussed in the present work. The results are from the genetic algo-
rithm approach
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2. The size of the central cation increases from Li+ to
K+ and therefore we see that the number of equiva-
lent values of evaporation energies before the tran-
sitions increase from L+

i (n = 5) to Na+ (n = 7) to
K+ (n = 11).

3. After the structural transitions occur upon the com-
pletion of the first shells, all different sizes for
the three different cations, we see that the values
of the “asymptotic” evaporative energies are nearly
the same for all doped clusters: they chiefly depend
on the He–He interaction because of the occurrence
of a nearly full screening of the central dopant.

4.2 3B- and quantum corrections

We have mentioned in the previous section that we
included the 3B-correction to the sum-of-potentials
scheme by using the dominant induced dipole forces
and also modeled the radial broadening due to quan-
tum delocalization by including a parametric correction
taken from the quantum bound states of the monomeric
complex.

The effects of such modifications on the classical cal-
culations could be appreciated by looking at the results
of Fig. 8, where we report the radial distributions of the
first group of adatoms in two different clusters as listed in
each panel. We see clearly the broadening effect by the
quantum simulation and the spatial shifts of the distribu-
tions which, in these specific cases, are seen as increasing
because of the changes on the initial repulsions between
solvent atoms. The overall shape is, however, left fairly
unchanged from that of the simpler calculations without
3B corrections, thus confirming the realistic qualities of
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Fig. 8 Computed radial distributions for lithium-containing clus-
ters and obtained with and without the inclusion of 3B forces. Two
different cluster sizes are shown in the panels

R/Å

N
(R

)

2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4

R/Å

N
(R

)

With 3-body effects
Sum of potentialsK+(He)

18

K+(He)
40

Fig. 9 Same calculations as those given by Fig. 8, this time how-
ever including K+ as the dopant species

the structures obtained without including 3B forces in
the clusters doped by positive ions.

The same type of results are obtained when one moves
to the sodium cation as a solvated impurity and there-
fore we shall not repeat for them the same analysis
as before. The further passage to potassium-containing
clusters also follows the same qualitative scaling, as can
be appreciated from the data reported by Fig. 9.

The two clusters shown in that figure are also fairly
large and clearly exhibit the broadening of the adatom
densities already seen in Fig. 8. The area under the single
region shown in the upper panel corresponds to 15 ada-
toms, and the more structured area below also indicates
the overall presence of 15 4He adatom contributions.
Both distributions, however, indicate a rather marginal
effect from 3B corrections and clearly support once
more the realism of using sum-of-potentials to describe
the medium-to-large ionic clusters. An even more tell-
ing comparison is given by the three panels of Fig. 10,
where three different clusters, with different sizes, are
reported. We show there the broadened distributions
when the quantum radial corrections are included for
larger clusters and are compared with the radial distri-
butions from the classical calculations.

It is interesting to note that the quantum broaden-
ing of the classical distributions (as given by all the
shaded areas) follows the general structures of the clas-
sical peaks but provides a picture where the individual
adatoms are much more uniformly “spread” around the
central dopants. The effect of creating an increasingly
unstructured spread is becoming more evident as one
moves from Li+ to K+ as central dopants: the reduced
M+–He interaction, in fact, allows less marked snow-
balling and “electrostriction” features to be present in
the cluster. This point will be further discussed below.
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Fig. 10 Computed radial distributions for Li+-containing (upper
panel), Na+-doped (medium panel) and K+-solvated (lower panel)
clusters of 4He of different sized. The solid curves describe the
classical distributions while the shaded areas include the quantum
broadening for each of the peaks

The reduction of “solid-like” features when quantum
effects are introduced (quantum “melting”) could also
be appreciated pictorially in relation to the overall
strength of the monomeric interaction potentials. The
results shown by Fig. 11, in fact, report the radial distri-
butions for one of the larger lithium-containing clusters,
the n = 76 cluster.

We see that the initial shell of ten adatoms effectively
screens the central cation and shows a marked “elec-
trostriction” effect in the sense that the most structured
solvent atoms move to the bottom of the potential wells,
as indicated in that picture. On the other hand, as one
moves outside that shell to the more equivalent ensem-
ble of He atoms (see for their energies the data of Fig. 7)
one sees that, even classically, they get distributed over

Fig. 11 Computed radial distributions from classical (solid lines
and peaks) and quantum (shaded area) distributions of the He
adatoms. The three closest peaks correspond to the n = 10 cluster

a very broad range of distances while the quantum cor-
rection shows a more “liquid-like” situation whereby
all the external He atoms are evenly distributed around
the central dopant with little clear structuring of their
collocations.

4.3 Classical and quantum densities

One of the issues when discussing the use of classical
methods for the description of He-containing clusters
is obviously the role played by the quantum properties
of this non-classical solvent, chiefly the role of zero-
point-energy (ZPE) and of spatial delocalization of the
adatoms.

Our experience with ionic impurities, however
[13–15], indicates that the two main consequences of
charge localization onto the central cationic dopant
within the cluster, i.e., that of “electrostriction” (or
solvent atom crowding of the cation) and of “snowball-
ing” (or the formation of solid-like structures around
the core) [3,23], actively condition the adatoms behav-
ior and make them more localized in space and more
regularly placed around the ion. In other words, the
quantum “melting” of the solvent occurs away from the
central cation and after the structural transition one sees
upon completion of the first shell around the dopant.

To reinforce more specifically the above findings, we
have carried out quantum structural calculations for the
same systems discussed here, using the same interaction
potentials as those given in the initial sections of the
present paper, and employed a variational Monte Carlo
(VMC) procedure followed by a diffusion Monte Carlo
(DMC) calculation. The details of the method and the
general findings of these calculations will be reported
elsewhere [31] and therefore will not be repeated here.

What we show in Fig. 12 is a very telling comparison
between classical and quantum description of a “regu-
lar” cluster with Li+ as a dopant. In the upper panel
of the figure we project the classical locations of the six
atoms once we fix the position of one of them as being
along the reference z-axis originating from the dopant
ion, while a second one is employed to define the xz
plane. The plane shown is that given by the (ϑ , ϕ) polar
angles and we project onto it the six adatoms repre-
sented by dots qualitatively including the delocalization
width mentioned before and located with respect to the
reference He atom along the axis. Because of its being
a projection of the sphere onto a plane, the reference
atom along the z axis arbitrarily appears on the lower-
right part of the projection in terms of ϕ-angle value.
One clearly detects, however, the regularity of the struc-
ture and the marked presence of localized densities for
the adatoms.
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Fig. 12 Computed He–He densities correlated to a reference He
atom along the z axis originating from the cationic dopant. The
correlated densities are projected onto the (ϑ , ϕ) plane of the polar
coordinates Li+ cationic core. The ordinates report the ϑ angles

The corresponding quantum results are given in the
lower panel of the same figure, where the quantum
equivalence of the six adatoms transforms the undefined
ϕ-value on the lower-right of the upper panel, seen in
the figure, into a broadly given density along the whole
range of the ϕ-angle. Apart from this difference, how-
ever, we clearly see the remarkable similarities between
the two patterns: the quantum densities are obviously
more “blurred” than the classical ones but they unequiv-
ocally show the presence of regular, solid-like structur-
ing of the quantum solvent in the neighborhood of the
dopant and its strong similarity with the classical picture
of the upper panel.

The corresponding results for the Na+ cation are
given for a larger cluster, that for n = 12, in the two
panels of Fig. 13.

We clearly see in both panels the combined effect
of an increased compactness of the quantum adatoms
(electrostriction) and of the regular locations of their
densities surrounding the central cation (snowballing).
Here again the undefined ϕ values for its quantum den-

Fig. 13 Same as Fig. 12, but for the cluster with n = 12 and having
Na+ as the doping cation

sity and the arbitrary location of a preselected ϕ value in
the case of the classical calculations of the upper panel
are present.

The similar results for the K+ impurities are pre-
sented by the two panels given in Fig. 14, where we also
see the positioning at (200,180) of the He atom placed
on the reference z-axis perpendicular to the projection
plane.

Because of the reduction of the strength of the inter-
action in the case of K+, and because of the larger size
of the first surrounding shell, we see here an even more
evident “blurring” of the quantum densities at regular
positions: the regularity of the locations of the adatoms
is however still very clear and the occurrence of the
“snowball” effect also confirmed in our third cationic
system.

Once we have established above the substantial
equivalence of the classical and quantum pictures in
the description of the energetically lowest configura-
tions for each cluster, it is instructive to analyze the
growth process by looking at the corresponding optimal
configurations as provided by the present classical cal-
culations from the GeCO method.
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Fig. 14 Same calculations as those of Fig. 13 but involving the
potassium cation as central dopant

The results of Fig. 15, which refer to Na+ as a dopant,
show the formation of a series of compact structures for
n from 1 to 7, where all the atoms “see” very strongly
the ionic potential, followed by a series of more open
structures where the screening effects reduce the indi-
vidual binding (see data of Fig. 7) until the structural
transition completes the first shell for n = 12, with the
formation of a regular, solid-like structure surrounding
the cationic impurity.

The similar results for the clusters which contain the
potassium ion as a dopant are shown in Fig. 16, where
the effect of the reduced strength of the ionic interaction
when going from Na+(He)n to K+(He)n is once more
underscored. We see, in fact, that the system exhibits
an energetic sequence that comes from the interplay
between direct ionic binding and screening from fellow
He atoms as the clusters become larger and at times less
compact. Thus, up to n = 9 the binding energies remain
fairly equivalent, while for n = 10, 11 and 12 the regular
structures are seen to be less compact and therefore the
individual evaporation energies increase (as shown by
Fig. 7). On the other hand, the following clusters (n = 13,
14, 15) complete the first shell, increase the compactness
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Fig. 15 Classical configurations of lowest energy for the
Na+(He) for n values clusters obtained from the genetic algorithm
and plotted up to the completion of the first full shell (n = 12)
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Fig. 16 Same calculations as those of Fig. 15 but for the K+ cat-
ionic impurity with shell structuring up to n = 15

of the aggregates and show reduced binding energies up
to the structural transition for n = 15.

5 Present conclusions

In the present work we have discussed in some detail
the energy landscapes and the structural features of
small 4He clusters containing ionic atoms like Li+, Na+
and K+.



Theor Chem Acc (2007) 118:53–65 65

The interaction forces have been obtained very
accurately from highly correlated ab initio calculations
and have been numerically fitted to yield general func-
tional forms for both the M+–He and He–He interac-
tions, the latter being obtained from earlier work on
that system [21]. The full potentials have been described
within the sum-of-potentials approximation and further
corrected by including the dominant 3B dipole-dipole
contributions: the latter were found to produce rather
small effects on the cluster structures and energetics.

The quantum delocalization of this special solvent
atoms has been introduced both empirically and accu-
rately via DMC methods and shown to be strongly
reduced for these ionic “solutions” where both the “elec-
trostriction” and “snowball” effects are important and
suggest the general reliability of a classical description.

The many existing structures within each cluster have
been optimized using the genetic algorithm and the
Basin–Hopping procedures described in Sect. 2 and the
sequences of cluster growth have been analyzed within
each cationic species.

The stronger interaction for the Li+(He)n small clus-
ters is seen to cause a structural transition around
n = 10, beyond which the He–He interactions domi-
nate the cluster energetics. Due to the reduced strengths
of the ionic potentials of Na+ and K+, and because of
the larger sizes of their minimum structures, one sees
that the same structural transitions occur at n = 12 for
Na+(He)n and at n = 15 for K+(He)n. Beyond this size
of clusters, the structures resume marked spatial delocal-
ization of solvent atoms and are dominated by He–He
potentials.

The present study therefore allows us to draw a series
of both qualitative and quantitative conclusions on the
energetics and on the structural features of microsol-
vation processes in the presence of ionic interactions
and within a quantum solvent. More detailed studies
from fully quantum treatments will be presented else-
where [31].
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